実践報告

仮想でいた「サーバ構築実習」環境の構築 仮想OSのUML(User Mode Linux)活用報告

九州ポリテクカレッジ 生産情報システム技術科 後野 隆 (九州職業能力開発大学校)

1.はじめに

1台のパーソナルコンピュータ(以下,PCと記す) で複数のオペレーティングシステム(以下,OSと記 す)を切り替えて使用できる,マルチOSを実現する アプリケーションにはいくつかあります。市販のも のやフリーのもの,異なる複数のOSを同時に使用で きるものや同じOSでしか使用できないものまでさま ざまです。いずれにしても,これらはOSの起動テス ト,ネットワーク実験,クロスコンパイル環境,リ モート管理などが主な目的です。今回はこれらの目 的とは異なりますが,仮想OS環境を実現するフリー のUser Mode Linuxをサーバ構築授業に取り入れま したので,活用事例としてここに報告します。

2. User Mode Linux活用の動機と実施環境

コストをかけずに現状の実習環境にPCを増設する 方法として,仮想環境を利用し「サーバ構築実習」 環境を構築しました。

2.1 実習環境の現状

PCを使用したサーバ構築実習では、「訓練生おの おののPCでサーバを構築する」というのが一般的で す。これらは、OSのインストールを含めたサーバ構 築実習の場合においては効果的方法であると思いま す。当校では、1台のPCにサーバ構築用(Linux OS) のハードディスクを準備しクライアント(Windows OS)のハードディスクと交換して実習しています。

しかし,クライアントからサーバへの挙動などを 即座に確認する場合や,複数ネットワーク間のサー バ同士の挙動およびクライアント接続実習となると, 理想的には複数のLANと1人2台以上のPCが必要に なります。このように,LAN間接続機器や訓練生1 人にクライアント用のPCとサーバ用のPC一式を準備 するとなるとかなりのコストがかかってしまいます。

2.2 仮想環境の利用

複数のLANを確保する方法としては,レイヤ3ス イッチを利用するのが手軽です。しかし,現状の実 習環境にはレイヤ3スイッチはありません。そこで, 異なるLAN間のサーバ設定とクライアントの挙動確 認については,物理的に分割されたLAN間ではあり ませんが,同一ネットワーク上で異なるIPアドレス を混在させることで仮想的に異なるLAN間に見立て ました。また,サーバ構築用のPCとして仮想OS環境 を実現できるフリーのUser Mode Linuxを利用して, 1台のPCに複数のサーバ構築環境を準備することに

しました。

2.3 実施環境

今回の実施は,高度1年アビリティコース(情報 技術エキスパート科)で,図1に示すようにクライ アントとなる16台の訓練生PCに対して1台のサーバ 用PCをマルチホームホストに設定し,User Mode Linuxを導入しました。そして,FTPサーバの設定と DNSサーバの設定,およびMailサーバの設定実習な どを実施しました。また,訓練生のPCを4台ずつ4 つのサブネットワークに属するようにIPアドレスを 割り振っておきます。

3.仮想環境の準備

便宜上,マルチホームホストⁱをルータとして同一 ネットワーク上に実現しているサブネットワークを 「仮想サブネットワーク環境」と呼び,User Mode Linuxによって実現している仮想的なマシンを「仮想 OS環境」と呼ぶことにします。

3.1 IPアドレスの割り振り

準備する実習環境のIPアドレスは,クラスCのプ ライベートアドレス192.168.5.0/24を8つのサブネッ トに分割して,表1に示すようにグループ ~グル ープ にそれぞれのサブネットワークを割り当てま した。

ここで表1のアドレス範囲に示す数字は, 192.168.5.XXのXXの部分です。また,サブネットマ スクは255.255.255.224となります。さらに,それぞれ のサブネットワークアドレス範囲内でのクライアン トとそのクライアントが使用する仮想OS環境のIPア ドレスを表2のように割り振ります。これで訓練生 1人に対して2台のPCを所有することができるよう になります。

3.2 マルチホームホストの設定

実習環境における(図1)サーバにはRed Hat

表1 サブネットワーク化とグループ

アト	ドレ	ス範囲	グループ
0	~	31	
32	~	63	
64	~	95	グループ
96	~	127	グループ
128	~	159	グループ
160	~	191	グループ
192	~	223	
224	~	255	

表2 IPアドレスの割り振り

グループ					
クライアント	仮想OS	ゲートウェイ			
71	81	96			
72	82	96			
73	83	96			
74	84	96			
グループ					
クライアント	仮想OS	ゲートウェイ			
101	111	126			
102	112	126			
103	113	126			
104	114	126			
グループ					
クライアント	仮想OS	ゲートウェイ			
131	141	158			
132	142	158			
133	143	158			
134	144	158			
グループ					
クライアント	仮想OS	ゲートウェイ			
171	181	190			
172	182	190			
173	183	190			
174	184	190			

Linux 8 ⁱⁱを使用しています。1つのLANカードに複数のIPアドレスを割り振るには,Linuxの場合,一行 で次のように設定します。netmaskの書式に続いて 今回設計したサブネットマスク値を記述します。

ifconfig eth0:1 IPアドレス netmask 255.255.255.224 broadcast ブロードキャストアドレス ここで,書式のIPアドレスの部分には表2で示す ゲートウェイのIPアドレスが該当します。broadcast に続けて表1に示すようにそれぞれのサブネットの ブロードキャストアドレスを指定します。次のグル ープにおけるゲートウェイの設定では,IPアドレス の前に記述しているeth0:1の記述がeth0:2,eth0:3, eth0:4と順次増やして設定することになります。

(1) 仮想サブネットワーク環境のルータ設定

サーバに対してマルチホームホストの設定ができ たところで,それぞれのサブネット間でのIP転送 (IP Packet forwarding)ができるようにカーネルパ ラメータであるnet.ipv4.ip_forwardの値を1に設定し ます。/etc/sysctl.confファイルの中に先に述べたカ ーネルパラメータの部分を変更します。

net.ipv4.ip_forward=1

コマンドで変更する場合には, sysctlコマンドを使 用します。指定設定ファイル読み込みオプション-p を付けて次のように指定します。ファイルを省略し た場合には,/etc/sysctl.confが読み込まれます。

sysctl -p /etc/sysctl.conf

3.3 User Mode Linuxの導入

User Mode Linuxは, Linux上に仮想的なLinux環 境を作るソフトウェアです。

リスト1 ユーザ登録スクリプト (uml-user.sh)

#! /bin/sh groupadd uml useradd -g uml user00 useradd -g uml user01 useradd -g uml user02 useradd -g uml user03 useradd -g uml user04 useradd -g uml user05 useradd -q uml user06 useradd -q uml user07 useradd -g uml user08 useradd -g uml user09 useradd -g uml user10 useradd -a uml user11 useradd -g uml user12 useradd -g uml user13 useradd -q uml user14 useradd -g uml user15 useradd -g uml user16 # cat /etc/passwd | grep user > setpasswd.txt # vi setpasswd.txt # newusers setpasswd.txt # echo "Create user00-user16"

リスト2 setpasswd.txtの編集例

user00:pass00:511:511::/home/user00:/bin/bash user01:pass01:512:511::/home/user01:/bin/bash user02:pass02:513:511::/home/user02:/bin/bash user03:pass03:514:511::/home/user03:/bin/bash user04:pass04:515:511::/home/user04:/bin/bash user05:pass05:516:511::/home/user05:/bin/bash user06:pass06:517:511::/home/user06:/bin/bash user07:pass07:518:511::/home/user07:/bin/bash user08:pass08:519:511::/home/user08:/bin/bash user09:pass09:520:511::/home/user09:/bin/bash user10:pass10:521:511::/home/user10:/bin/bash user11:pass11:522:511::/home/user11:/bin/bash user12:pass12:523:511::/home/user12:/bin/bash user13:pass13:524:511::/home/user13:/bin/bash user14:pass14:525:511::/home/user14:/bin/bash user15:pass15:526:511::/home/user15:/bin/bash user16:pass16:527:511::/home/user16:/bin/bash

 (1) 前準備(サーバPCのアカウント登録) 仮想OS環境を準備するサーバPCに訓練生のアカウントを作成しておきます。訓練生は,クライアントからサーバPCに遠隔接続(telnetやssh接続など)して仮想OS環境を利用します。ユーザが16名ですが,

技能と技術

作業を半自動化するためにuser00~user16までのユ ーザ登録の簡単なスクリプト(uml-user.sh)を作成 しました(リスト1)。パスワード設定は,リスト2 に示すようにこのスクリプト実行中に生成される setpasswd.txtをテキストエディタ^{vi}で編集して newusersコマンドで一括設定します。

(2) User Mode Linuxのインストール

User Mode Linuxのインストールは, リスト3に 示すようにrpmコマンドでインストールします。 rpmファイルⁱⁱⁱは,「The User-mode Linux Kernel Home Page」^{iv} からダウンロードします。

リスト3 rpmコマンドによるインストール

rpm -ihv user_mode_linux-2.4.19.5um-0.i386.rpm

(3) User Mode Linuxの実行

仮想OSを起動(ブート)するには,リスト4に示 すように1行の書式で実行します。ここで指定する IPアドレスは,仮想OSのものでなくUser Mode Linuxをインストールしているサーバ用PCのIPアド レスを指定します^v。このIPアドレスは仮想OSと実際 のサーバPCとの仮想ゲートウェイのために使われます。

リスト4 仮想OSの起動(ブート)

linux ubd0=COW_filesystem ,root_filesystem eth0=tuntap,,,192.168.5.35

書式におけるroot_filesystemとは,仮想OSのイメ ージファイルになります。また,COW_filesystemと はCopy On Write_filesystemのことで,仮想OSのイ メージファイルに対する変更の差分ファイルのこと です。実際には,root_filesystemにdiff-abilityを指定 し,COW_filesystemに/home/uml/rootfs-ability ^{vi}を 指定しています。一度COWファイルが作成されると 次回からはroot_filesystemを省略することができま す。このイメージファイルを複数の訓練生(16名) おのおのに準備して使用することもできますが,イ メージファイルは,かなり大きなサイズ(679MB)

です。ハードディスクの節約のためにも複数の差分 ファイルを使用して、1つのイメージファイルを複 数の仮想OSとして使用することにしています。また, 差分ファイルを削除することで実習前の初期の状態 へ速やかに戻すことができます。そのためにもこの 共有イメージファイルには実習に即した設定準備が 必要です(4.1イメージファイル(rootfs-ability)の 準備調整)。クライアントから仮想OSへの接続には telnet接続またはssh接続で行います。User Mode Linuxはデフォルトでxtermを仮想コンソールにして います。そこで,起動オプションにcon=pty con= fd:0,fd:1を指定します。これまでの手順をまとめると, クライアントは, User Mode Linuxの準備してある サーバ用PCに遠隔接続し,ログイン後に仮想OSをブ ートさせるためのコマンドを入力することになりま す。次にこの作業を省略して,遠隔接続しログイン すると同時に仮想OSのログインプロンプトが出力さ れるようにします。

(4) 最終準備(仮想OSの起動スクリプト)

仮想OSの起動はuml-start.shスクリプト(リスト5) によってログイン後,直ちに起動できるようにしま す。そのために,各アカウントのホームディレクト リにある.bashrcにリスト6のように記述します。

リスト5 uml-start.shスクリプト

#/bin/sh				
## New Image File				
if [-f /diff-ability]; then				
# Exist diff-ability File				
linux con=pty con=fd:0,fd:1 ubd0=diff-ability				
eth0=tuntap,,,192.168.5.35				
else				
# No Diff-ability File				
linux con=pty con=fd:0,fd:1 ubd0=diff-				
ability,/home/uml/rootfs-ability				
eth0=tuntap,,,192.168.5.35				
fi				
stty sane				

下線部分は1行で記述します。

リスト6 .bashrcの内容

# .bashrc		
# User specific aliases and functions		
# Source global definitions		
if [-f /etc/bashrc]; then		
. /etc/bashrc		
fi		
sh ./uml-start.sh		

4. 仮想環境における実習項目

訓練生が実習の中で手動によるネットワーク設定 を行うことができるようにrootfs-abilityのイメージフ ァイルにはネットワーク設定が未設定にしてありま す。したがって,最初の仮想OSの起動では,自動起 動にしてあるxinetdは起動しません。

ネットワークの設定が完了し,再起動後にxinetd は正常に起動します。また,訓練生は,sshで仮想 OSに接続します。接続ユーザは,user01~user16の 16名,指導員用にuser00が用意してあります。パス ワードは,user01がpass01のようにpassの次にユー ザ名と同じ番号を付けます。仮想OSのrootのパスワ ードは,passrootに設定しています。

rootfs-abilityのイメージファイルにはTELNET, FTP, DNS,メール(qmail,qpopper)の実習がで きるように準備しています。rpmによるインストー ルやソースコードのダウンロードは不要です。 qpopperについては,前もってシャドウパスワード 対応と/Mailboxを読み込むようにコンパイルしてお きます(/usr/sbinのpopper)。

4.1 イメージファイル (rootfs-ability)の準備 調整

イメージファイル(rootfs-ability)は,おのおのの 訓練生が共有するので,基本構成としてネットワー ク設定の初期化や実習に必要なアプリケーションを インストールするなどして準備調整しておかなけれ ばなりません。ダウンロードしたイメージファイル は、管理者であるrootのパスワードはrootに設定して あります。まず、3.3「User Mode Linuxの実行」 のリスト4に示したように仮想OSを起動してrootで ログインします。ログイン後は通常のLinuxの操作と 同様です。サーバ構築実習に必要なアプリケーショ ンの設定ファイルなどの準備をしておきます。この 作業終了後、仮想OS環境からログアウトすると差分 ファイルが生成されていますから、リスト7に示す ように差分ファイルをuml_mooコマンド vii でイメー ジファイルに書き戻します。

リスト7 差分ファイルの書き戻し

uml_moo <Cow file> <new backing file>

ここで, Cow fileは差分ファイルを指定します。ま た, new backing fileには新たなイメージファイル名 を指定します。uml_mooコマンドで生成されたイメ ージファイルが基本イメージファイルとなります。 おのおのの訓練生(user01~user16)に対して読み 込み専用属性に設定しておきます。

ダウンロードしたイメージファイル内へのファイ ルの削除やファイルのコピーは,ループバックデバ イスを利用して,イメージファイルをデバイスとし て扱えるようにします。

リスト8 ループバックデバイスによるマウント

mount -o loop -t ext2 rootfs_ability /mnt

リスト8のように/mntにrootfs_abilityを/mntディ レクトリにマウントすることで,通常のファイルシ ステムのように/mntを介してrootfs_abilityの内部に アクセスすることができます。

4.2 実習項目

今回の実習で実施した主な項目は次ページの6項 目です。

- 1. rootのパスワードの変更とユーザ登録
- 2. TELNETが使えるようにxinetdの設定
- 3.sshのパスワード認証と公開鍵認証接続のための 設定
- 4.FTPの設定および動作確認
- 5.DNSサーバ設定および動作確認 マスター,スレーブ,サブドメイン
- 6.メールサーバ SMTPサーバ(qmail)設定 メールのリレー中継 POPサーバ(qpopper)設定
 - 5.まとめ

仮想OS環境を実現するためには,ハードディスク ドライブ(HDD)が2GB以上,メモリが256MB程度 を必要とします。これらの条件は現在の一般的なPC のスペックならば十分に対応できます。今回使用し た,マルチホームホストと仮想OS環境を提供するサ ーバPCのスペックは,表3に示すとおりです。

5.1 実習結果

実習を始めるに当たってクライアント(訓練生) 16名が一斉に仮想OS環境に接続することになりま す。このとき,仮想OSのログイン画面がクライアン トの端末に表示されるまで時間がかかってしまいま す。差分ファイルが大きくなるほど気になります。 接続の順番にもよりますが,最終的には3~5分程 度でも体感的にかなり待たされる気持ちになります。 そのためログインを一斉にするのでなく時間差を付 けることで,ある程度対処することができました。 しかし,ログイン後は,訓練生おのおのの作業ペー

表3 実習で使用したサーバPCスペック

CPU	Pentium 1 GHz	
メモリ	320M	
HDD	20GB	

スはまちまちなので仮想OSからのレスポンスが悪い と感じることは少ないことが確認できました。

5.2 今後の課題

仮想OSへのログインに時間差を付けることは,ス ムーズなログインへの根本的な解決になっていませ ん。コストはなるべくかけたくはありませんが,仮 想OSを提供するサーバPCを増やすなどの処置も考え られます。

<注・参照>

- i 1 つのインタフェース(LANカード)に複数のIPアドレ スが割り振られているホストのこと。
- ii サーバ構築研究会:「Red Hat Linux 8で作るネットワ ークサーバ構築ガイド8.0対応」,秀和システム,第1版 第1刷,2003.2.15.
- iii (2004年2月現在)user_mode_linux-2.4.19.5um-0.i386.rpm
- iv ^r The User-mode Linux Kernel Home Page J http://user-mode-linux.sourceforge.net/
- v ホスト側の/dev/tap0に割り当てるIPアドレスは、仮想 OS内部のイーサネットに割り当てるIPアドレスと異なっていなければなりません。しかし、サーバPCの実際 のイーサネットカードに割り当てたアドレスと同じで もかまいません(User Mode Linux HOWTO:Setting up the network)。
- vi http://user-mode-linux.sourceforge.net/からroot_fs.md-8.2-full.pristine.20020324.bz2をダウンロードし,展開後 にrootfs-abilityにリネームして/home/umlディレクトリ に格納しています。
- vii User Mode Linux Core Team , ^rUser Mode Linux HOWTO」, ^r7.5 uml_moo:Merging a COW file with its backing file』.

5/2004