<研究ノート>

座屈拘束ブレースの接触解析に及ぼす メッシュサイズの影響

Influence of Mesh Size on the Contact Analysis of Buckling-Restrained Braces

職業能力開発総合大学校東京校	栗	Ш	好	夫
	古	\blacksquare	音式 兄兄	人

座屈拘束ブレースの接触解析に及ぼす メッシュサイズの影響

職業能力開発総合大学校東京校 栗 山 好 夫 吉 田 競 人

Influence of Mesh Size on the Contact Analysis of Buckling-Restrained Braces Yoshio KURIYAMA, Keito YOSHIDA

 要約 有限要素法による座屈拘束ブレースの解析では、静的解析においても、幾何学的非 線形としての大ひずみ・大変形と材料非線形としての弾塑性および状態変化としての接触問題が存在する。そのため、解析において膨大な計算処理時間を要している。このため、今後の繰返し軸方向荷重や地震動による挙動解析を進めるにあたっては、問題の質に応じて可能な限り自由度の少ないモデルを用いることが要求される。

本報告は、これまでの研究で得られた解の収束性を満足する解析モデルを基準として、メッ シュサイズが荷重一変位線図と軸変形モード図に及ぼす影響を検討したものである。その結 果、解析に必要な計算処理時間にはメッシュサイズと共に解析ステップ数の設定も大きく影 響することが明確になり、荷重一変位関係や芯ブレースのモード変遷の追跡などの解析目的 に応じてこれらを使い分けることにより、効率的な解析結果が得られるという知見が得られた。

I はじめに

座屈拘束ブレースは構造物の振動制御を目的とした もので従来アンボンドブレースと呼ばれ、日本では 1980年代から現在まで多くの研究がすすめられてい る^{(1)~(9)}。その研究分野の広がりにより1998年に米国 に紹介され、2003年連邦政府の緊急管理庁(FEMA) の推奨規準および鋼構造協会(AISC)の耐震設計指 針に規準化されるに到った⁽¹⁰⁾。

振動制御技術を分類すると、耐震(剛構造と柔構造)、 免震(アイソレータ+ダンパ)、制振(パッシブ制御 とアクティブ制御)の3種類になる⁽¹¹⁾。本研究の座 屈拘束ブレースは、このうちのパッシブ制御に属し、 制御機構としては図1左図のような弾塑性ダンパの履 歴減衰型(変位型)になる。

図1右図に示す従来の鉄骨ブレースは水平力に対し て有効かつ効率的に抵抗する制振構造要素であるが、 一般的に鉄骨ブレースの細長比は大きく圧縮力が作用 した時の座屈は避けられない。また、コンクリートな どによる座屈拘束材を使用した場合は、軸剛性が高ま り、周辺の柱に軸応力が集中し設計が困難になる。こ れらの欠点を解決するために考案されたものが図2に

示す座屈拘束ブレースである。すなわち座屈拘束のた めに芯ブレース外側に剛性の高い部材を配置し、座屈 を拘束すると共に、これにより軸剛性の増大をもたら すことがないように芯ブレースとの付着を排除した制 振部材である。図3はK型ブレースとしての適用例で ある。

座屈拘束ブレース(BRB)の体系的な理論は簡略 化したモデルを基に様々な実験を通し考察されている が、補剛材を含むBRBの有限要素(FEM)解析によ る挙動の再現は未だ適切には行われていない。FEM 解析でブレースの挙動が再現できれば今後種々の細長 比のブレースや補剛材の間隙の影響などを探ることが 可能となり理論構築の一助となるほか、時間と費用の 効率化を図ることが可能となる。

著者ら^{(12)~(16)}はこのために、補剛材と芯ブレースの 間隙や補剛材の剛性などのパラメータを含めた解析を 行い、芯ブレースに生じる波状の変形を再現するとと もに、補剛材の必要剛性を解析的に求め、提案してき た。

しかしながら解析には多大な時間を要することから、 本報告では、これまでの研究で得られた解の収束性を 満足する解析モデルを基準として、今後の解析処理時 間を短縮するためにメッシュサイズやサブステップ数 が荷重一変位線図と軸変形モード図に及ぼす影響を検 討したものである。

Ⅱ 基準モデルによる既往の研究成果^{(12)~(16)}

この章ではこれまでに行われた基準モデルの解析手 法とその結果について簡単に説明を行うことにする。

1 解析概要

本研究の解析対象である座屈拘束ブレースのモード の分岐を追跡するために、有限要素法解析においては、 幾何学的非線形(大変形問題)、材料非線形(弾塑性 問題)、状態変化(接触問題)を考慮した。解析には 汎用解析コードANSYS Rel.11.0を用い、分岐経路追 跡を行うために変位制御法を採用した。

1-1 非線形解析手法

非線形問題の反復解析にはNewton-Raphson法を 用いた。収束方法は、各イタレーション毎に接線剛性 マトリックスおよび残差を更新し、設定した収束基準 より残差が下回ったとき収束達成とした。

1-2 接触問題の解析手法

接触解析の解法には、接触の適合性を定義し平衡状 態を達成し、食い込み許容量が許容範囲内になるまで イタレーションを繰り返すペナルティ法とラグランジェ 乗数法を組み合わせたペナルティ+ラグランジェ法を 用いた。本接触解析における食い込み許容量は芯ブレー ス要素の0.1倍の距離と設定している。対象とした芯 ブレースの厚さは45mm、要素分割は5としているた め一要素の厚さは9mmであり、本解析において設定 した食い込み許容量は0.9mmである。

2 基準解析モデル

図4に基準解析モデルの形状寸法を示す。芯ブレー ス形状および補剛材形状は過去の実験⁽⁸⁾を参考にそれ ぞれ45×90×4680、40×90×4660とした。芯ブレース 材料特性はバイリニア、降伏応力度は261N/mm²、第 2 勾配(E2)は第1勾配(E1)の1/100、ヤング係 数は206GPaとした。芯ブレースと補剛材の間隙はe= 0.1mmとした。補剛材のヤング率(Ec)は全体座屈 を拘束するために芯ブレースのヤング率(E₁)の6倍 と十分な値を与え、補剛材の降伏強度は芯ブレース降 伏強度の0.1倍とした。芯ブレースの初期不整形状は 線形座屈解析により得られた一次モードと仮定し、そ の中央最大振幅を0.01mmとして与えた。また補剛材 同士のx方向変位にはカップリングを指定し同一変位 を生じるようにしている。図5は芯ブレースの要素分 割(例として横方向3要素分割のときのアスペクト比 a:bの場合)の説明と解析に採用した2次の変位関 数をもつ2次元8節点高次要素(PLAN183)を示し ている。

3 高次変形モード

図 6 は前述の解析仮定に基づいて得られた荷重-変 位線図である。横軸、縦軸はそれぞれ軸方向変位と圧 縮軸力を示す。引張軸力が作用した場合と同じく、降 伏強度に達した後塑性変形を生じ、引張と同様な挙動 を示している。図 7 はこの時の軸変形モード図である。 るは軸方向変位量(mm)を示す。この変形は非常に 僅かであるために図示に当たっては100~300倍に拡大 している。左から右に向うにつれ、荷重が増加し変形 が進んだモードの状態を示している。モードの移り変 わりは次のとおりである。軸変位の増加とともにブレー ス後、モードはS字の 2 次モードに分岐する($\delta = 5.5$ mm)。中央部が座屈し、補剛材に接触する($\delta = 4$ mm)。

その降伏強度に達した後は、軸変形の増加とともに モード次数が高次モードに移行し、 $\delta = 20$ mmにおい ては波状のモードがブレースに一様に生じた。この分 岐追跡は、これまで報告されている実験結果⁽⁸⁾を再現 している。

4 補剛材曲げ剛性と降伏強度の影響

補剛材剛性と補剛材曲げ強度が座屈ブレースの挙動 に与える影響を求めるためにこれらをパラメータとし、 解析を行った。解析モデルは図4に示すモデルと同様 である。解析パラメータとして補剛材剛性と補剛材曲 げ強度を基準とした。補剛材片側の曲げ剛性比Sと曲 げ強度比YFは

$$S = \frac{E_C I_C}{E_B I_B} \tag{1}$$

$$YF = \frac{Z_C \sigma_C}{Z_B \sigma_B} \tag{2}$$

ここで、Iは断面二次モーメント、Eはヤング率、Zは断面係数、 σ は降伏応力であり、添字のCとBはそ れぞれの補剛材と芯ブレースをあらわしている。

図8はいくつかの曲げ剛性比Sと曲げ強度比YFを パラメータとし解析を行い、必要剛性条件を求めた中 からその挙動を4種に区別したタイプの荷重-変位図 を示したものである。図中の横軸はブレースの軸方向 変位、縦軸は芯ブレースに作用した軸方向荷重である。

表1と図9は、基準モデルに対してSとYFを変化 させて得られた解析結果である。図9の横軸は曲げ剛 性比Sを示し、縦軸は対数軸とした曲げ強度比YFで ある。図表中履歴タイプI(×)は一次モード形状を 呈し芯ブレースの降伏強度に達しないもの、履歴タイ プII(▲)は補剛材曲げ強度を高めることによりブレー ス降伏強度に達し塑性変形を生じるがモードは1次モー ドに留まるもの、履歴タイプⅢ(■)は高次モードを 呈し1%未満程度のひずみが生じるもの、履歴タイプ Ⅳ(◆)は高次モードでひずみが1%を越えるものを 示す。なお、図9における境界は定性的な表示である。

図 9 曲げ剛性比Sと曲げ強度比YFによる荷重 -変位線図

表1 履歴タイプとモード種別

履歴タイプ	I ×	∏ ▲		IV ♦	
モード種別	(a) 一次モード	(a) 一次モード	()) 高次モード	()高次モード	
荷重一変位線図	降伏点に 達しない (a)	降伏点に 達する (b)	降伏点に 達する (c)	降伏棚が 2 %生じる (d)	

Ⅲ 解析モデルの解析時間に及ぼす影響

1 解析時間

図8に示すように荷重一変位曲線の挙動は、前章ま での基準モデルを用いることで2%ひずみ($\delta = 100$ mm)まで得られているが、これらの解析に通常1~ 3週間の計算時間を要し、この解析時間の膨大さが今 後の展開のために大きな問題となっている。なお現在 解析に用いているマシンの性能は下記である。

解析マシンの性能

OS:Windows XP×64 SP 2 CPU:Quad Q9550 @2..83GHz RAM:8.0GB

メッシュサイズとサブステップ数による BRBの挙動と解析時間

前章で述べた基準モデルにより得られた解析結果を 基に、ここではメッシュサイズとサブステップ数の影 響を考察することにした。

2-1 メッシュサイズと解析時間

表2の左端柱欄の記号(解析モデル名)は、中央の 数字2が後述するサブステップ数1E2(100)を意味 して、右端の数字4は前章で区別した履歴タイプWを 表している。表の解析モデルは、この2つの条件を一 定としてA記号で示される前章で解析してきた基準モ デルと3種(B、C、D記号)のメッシュサイズを変 更したモデルを示す。ここでは解析時間の短縮化を図 るためにメッシュサイズを考慮できる範囲で最大限大 きくして、要素数・節点数を少なく(自由度数を減少) したモデルについて、その解析時間、荷重一変位図お よび軸変形モード図を比較したものである。解析終了 変位を0.5%ひずみ(ここではδ=20mm)と制限した のは、芯ブレースが塑性応力に達し、モード次数も十 分高次になると判断したためである。この目的に限定 して解析時間がより少ない、妥当な形状を有するモデ ルを作成することになる。ここで、表中の要素とアス ペクト比等は図5に準じているが、基準のAモデルは 横方向5要素分割であり、B、C、Dモデルは限界と なる(x方向の圧縮と引張の曲げ応力を表現するため) 2要素分割でのメッシュサイズを検討した。

表2より軸方向変位20mmまでなら、基準モデルと したA-2-4モデルに対して、芯ブレース横方向を2 要素分割にして、さらにアスペクト比も落として自由 度数を大きく縮減したB、C、Dモデルでも荷重一変 位図と軸変形モード図はほぼ等しいことが分かる。 (表中軸変形モード図におけるブレース幅が異なるよ うに見えるが、これは変位出力図の倍率を見やすくす るため処理時に適宜変えたためである。)

なお、これ以上の軸方向変位に対してB、C、Dモ デルではそれぞれ異なる変位で解の収束が困難となり、 2%ひずみ(δ =100mm)まで達することできず、Bモ デルでは変位 δ が27.8mm、Cモデルでは31.1mm、D モデルでは35.5mmで解が発散した。

表3 サブステップ数によるBRBの挙動と解析時間の比較

	メッシュサイズ	9×9	荷重(kN)一変位(mm)線図	軸変形モード図	
	(アスペクト比a:b)	(1:1)		$\delta = 4, 5, 5, 6, 2, 6, 3, 6, 7, 7, 11, 14, 20$	
A-2-4	要素数	2,600	1200		
	節点数	8,936	600 100 200		
	解析時間	525時間24分	0 7 10 15 20		
	メッシュサイズ	22.5x30	荷重(kN)—麥位(mm)線図	軸変形モード図	
	(アスペクト比a:b)	(1:1,33)	HER XHOUL	δ=4,5,5,6,2,6,3,6,7,7,11,14,20	
B-2-4	要素数	314	1200 1000 800 400 200		
521	節点数	1,269			
	解析時間 13	131時間20分	0 5 10 15 20	
	メッシュサイズ 22.5x45 古重(LN)-				
	メッシュサイズ	22.5×45	荷重(kN)—麥位(mm)線図	軸変形モード図	
	メッシュサイズ (アスペクト比a:b)	22.5x45 (1:2)	荷重(kN)一変位(mm)線図	軸変形モード図 δ=4,5.5,6.2,6.3,6.7,7,11,14,20	
C-2-4	メッシュサイズ (アスペクト比a:b) 要素数	22.5x45 (1:2) 208	荷重(kN)一変位(mm)線図	軸変形モード図 δ=4,5.5,6.2,6.3,6.7,7,11,14,20	
C-2-4	メッシュサイズ (アスペクト比a:b) 要素数 節点数	22.5×45 (1:2) 208 845	荷重(kN)一变位(mm)線図	釉変形モード図	
C-2-4	メッシュサイズ (アスペクト比a:b) 要素数 節点数 解析時間	22.5x45 (1:2) 208 845 89時間14分	有重(kH)一变位(mm)線図	Name Control Name Contro	
C-2-4	メッシュサイズ (アスペクト比a:b) 要素数 節点数 解析時間 メッシュサイズ	22.5x45 (1:2) 208 845 89時間14分 22.5x67.5	荷重(kh)-变位(mm)線図	National State (National	
C-2-4	メッシュサイズ (アスペクト比a:b) 要素数 節点数 解析時間 メッシュサイズ (アスペクト比a:b)	22.5x45 (1:2) 208 845 89時間14分 22.5x67.5 (1:3)	有重(kk)一变位(mm)線区 1000 000 000 000 005 005 005 005 005 00	Nagati Nag	
C-2-4	メッシュサイズ (アスペクト比a:b) 要素数 節点数 解析時間 メッシュサイズ (アスペクト比a:b) 要素数	22.5x45 (1:2) 208 845 89時間14分 22.5x67.5 (1:3) 140	有重(kl)一变位(mm)線区 1000	NB変形モード図 δ=4,5,5,6,2,6,3,6,7,7,11,14,20 BB変形モード図 δ=4,5,5,6,2,6,3,6,7,7,11,14,20	
C-2-4	 メッシュサイズ (アスペクト比a:b) 要素数 節点数 解析時間 メッシュサイズ (アスペクト比a:b) 要素数 節点数 節点数 	22.5x45 (1:2) 208 845 89時間14分 22.5x67.5 (1:3) 140 573	有重(kk)一变位(mm)線区 1000 000 000 000 005 100 0 5 100 0 5 10 15 30 0 5 10 15 30 0 5 10 15 30 0 0 5 10 15 30 0 0 5 10 15 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB変形モード図 δ=4.5.5.6.2.6.3.6.7.7.11.14.20 NB変形モード図 6=4.5.5.6.2.6.3.6.7.7.11.14.20 1000000000000000000000000000000000	

表 2 メッシュサイズによるBRBの挙動と解析時間の比較

2-2 サブステップ数と解析時間

表3は解析時に指定するサブステップ数による影響 を、A-1 (⇒A-2-4) 記号で示される基準モデル の初期値100 (1E2) から10 (1E1) にしたA-2 (⇒A-1-4) モデルと1 (1E0) にしたA-3 (⇒A-0-4) モデルを比較したものである。これらも変位20mmま でなら基準モデルのA-1モデルとほぼ等しい結果が 得られ、設定値に応じて解析時間が少なくなっている ことが分かる。しかし、変位 (ひずみ) を20mm (0.5%) 以上大きくとろうとすると、小さいサブステッ プ数ほど収束が早く困難となる。

なお、表中のサブステップ数SBSTP(NSBST) =NSBM(プログラムで用いる命令)は、次を意味し ている。

汎用コードANSYSでは非線形解析時に一般に荷重 増分(本モデルでは変位増分に相当、この変位増分を 0.1mmに設定)により解析を進め、各荷重ステップ 内では、荷重が分割され徐々に与えられる。その分割 荷重が与えられる区間をサブステップという。

さらに実際に計算が行われる作業単位として平衡イ タレーションがある。これは1個または複数個のイタ レーションにより、1サブステップが構成される。こ のイタレーションが収束することで、サブステップ終 了時に解を得ることができる。

	サブステップ数 SBSTP=NSBM	荷重(kN)一変位(mm)線図	軸変形モード図 δ=4,5.5,6.2,6.3,6.7,7,11,14,20
A-1	1 E 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	解析時間		
	525時間24分		
	サブステップ数 SBSTP=NSBM	荷重(kN)一変位(mm)線図	軸変形モード図 δ=4,5.5,6.2,6.3,6.7,7,11.14.20
A-2	1 E 1	$1200 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
~ 2	解析時間		
	477時間16分		
	サブステップ数 SBSTP=NSBM	荷重(kN)一変位(mm)線図	軸変形モ ー ド図 δ=4,5.5,6.2,6.3,6.7,7,11,14,20
A-3	1 E 0	1200 1000 800 600 400 200	
	解析時間		
	231時間12分	0 5 10 15 20	

このオプションはとくに時刻歴応答解析(動解析) において重要であるが、本報告の静解析においても適 切な役割を果たす。このオプションは解析時間とハー ドウェアのメモリ制限により拘束を受けるので本研究 ではジョブの分割処理などの手法を導入して対応した。 なおANSYSでは、このサブステップ数を次のコマ ンド(NSUBST)で与えている。

NSUBST, NSBSTP, NSBMX, NSBMN, Carry

ここで、NSBSTPは現在の荷重ステップで用いる サブステップ数(自動時間ステップ機能を用いている ので第1サブステップのサイズ)、NSBMXは使用さ れるサブステップ数の最大数(すなわち、最小時間ス テップサイズ)、NSBMNは使用されるサブステップ 数の最小数(すなわち、最大時間ステップサイズ)、 CarryはこのときOFFで各荷重ステップの開始時に、 時間ステップとしてNSBSTPを用いる。

3 履歴タイプによるBRBの挙動と解析時間

基準モデルでは解析終了変位を20mmまでとしたと き、指定するサブステップ数による荷重一変位図と軸 変形モード図について影響がなかったことから。次に 履歴タイプによるメッシュサイズの比較検討を行うこ とにする。ここでは挙動変化の大きい履歴タイプ II を 用いる。図 8 において、降伏強度まで達しながら変位 るが20mm前に全体座屈を生じる解析モデル(b) は、 図 9 と表 1 で示す履歴タイプ II の代表的なモデルであ

る。表4はこの条件(S=4.22、YF=0.72)について、 表2に示すA~Dモデルを適用した結果を示すもので、 この条件においてもA~Dモデル(SBSTP(NSBST) $=NSBM=100: -定) は \delta が 20mm までであれば、$ それぞれのモデルにおいて解析が可能であることが分 かる。表5は、表4におけるC(C-2-2) モデルに おいてサブステップ数SBSTP (NSBST) =NSBMを 10に減少させたC-1-2モデルと1に減少させた C-0-2モデルについて比較したものである。表中の C-0-2モデルは、サブステップ数の不足により解は 得られるが充分なサブステップ数のものと比較すると 異なる挙動を示す可能性があることを示唆している。 サブステップ数の不足により解が収束せず中断してし まえばエラーとして理解できるが、このように解が得 られてしまう場合もあるため、常に得られた結果が妥 当であるか否かを判断できるようにパラメータを振り なおして、解の妥当性を判断する必要がある。

本報告のモデルではこれらの結果からサブステップ 数の最小値は10とすることにしている。

当初の解析⁽¹²⁾で解の収束ができない原因は、分岐 経路追跡法⁽¹³⁾、芯ブレースと補剛材との隙間(距離)、 要素数やサブステップ数の不足、アスペクト比、剛性 や降伏強度等の適切な条件選択の問題が複雑に絡んで いたためであった。著者らはこれらの問題を解決する

メッシュサイズ 9x9 軸変形モード図 アスペクト比a:b =4.5.5.6.2.6.3.6.7.7.11.14.20 要素数 2,600 A-2-2 節点数 8.936 解析時間 294時間16分 メッシュサイズ 22.5x30 軸変形モード図 荷重(kN)--変位(mm)線図 アスペクト比a:b (1:1.33)δ=4.5.5.6.2.6.3.6.7.7.11.14.2 要素数 316 B-2-2 節点数 1.269 解析時間 64時間0分 15 10 メッシュサイズ 軸変形モード図 22.5×45 荷重(kN)--変位(mm)線図 (アスペクト比a・b $(1 \cdot 2)$ 8=455626367711142 要素数 210 C-2-2 節点数 845 解析時間 59時間15分 メッシュサイズ 22.5x67.5 軸変形モード図 荷重(kN)-- 変位(mm)線図 アスペクト比a:b δ=4.5.5.6.2.6.3.6.7.7.1 要素数 142 D-2-2 節占数 573 解析時間 41時間21分

表4 A~Dモデルの履歴タイプⅡによるBRBの挙動と 解析時間の比較

ためにかなりの試行錯誤を経て、モデルにかかわらず 安定した解析を実行できるようにしてきた^{(12)~(16)}。こ の成果が基準解析モデル(以降A-2-〇モデルとし て使用)であるが、このモデルをすべての解析に用い ると、この必要がない条件のところ(例えば、変位20 mmまでの解析)でも解析時間を要しているという知 見が得られた。

	サブステップ数 SBSTP=NSBM	荷重(kN)一変位(mm)線図	軸変形モード図 る=4,5 <u>5</u> ,6.2,6.3,6.7,7,11,14,20	
C-2-2	1 E 2			
	解析時間			
	59時間15分 0 5 10 15	0 5 10 15 20		
	サブステップ数 SPSTD-NSPM		軸変形モード図	
	SDSIF-NSBM		δ =4,5.5,6.2,6.3,6.7,7,11,14,20	
C-1-2	1 E 1	1200 1000 600 0 5 10 15 20		
	解析時間			
	36時間01分			
	サブステップ数	莅重(IN)亦位(mm))娘网	軸変形モード図	
	SBSTP=NSBM	何里(KN)一変位(mm)線区	$\delta=\!\!4,\!5.5,\!6.2,\!6.3,\!6.7,\!7,\!11,\!14,\!20$	
C-0-2	1 E 0	1200		
	解析時間	600 400 200		
	10時間22分	0 5 10 15 20		

表5 Cモデルにおけるサブステップ数による BRBの挙動と解析時間の比較

そのための解決方法の一つとして考えられるのは、 人為的な操作をかなり必要とするが、まず解析範囲 (変位の量)を小さくしてステップ毎に外部ファイル へ出力させ、どこからでもリスタート(再計算)でき るようにすることである。とくに収束できずに計算処 理が強制終了してしまったステップについては、その 1つ前のファイルを読み込み、サブステップ数の条件 を変更(一般的には増加)して、収束できるまでこれ を人為的に変更して繰り返し、その後サブステップ数 を減少させて、最終的な変位までこれらを繰り返すこ とである。これは解析をモニタリングしながらフィー ドバックしていくため、計算機そのものの処理時間は 少なくなるが、操作は煩雑になる。

今後予定されている圧縮と引張りの繰り返し処理で は、あまり高度な処理プログラムを用いると、リスター トすべき出力ファイルの読み込み処理において、さら に操作が煩雑になり、場合によってはプログラム修正 も伴うため、モニタリング方式で解析を進めるには、 その処理が簡潔になるようなプログラムにすることが 必要になる。

Ⅳ まとめ

接触を考慮した座屈拘束ブレース解析において、 0.5% (δ =20mm) までの圧縮ひずみの解析に限定す るとき、得られた知見は次のようになる。

(1) 芯ブレース横方向5要素分割でアスペクト比が
 1:1の基準モデルから、横方向2要素分割でアスペクト比1:3まで自由度を減らしても十分な荷重一変
 位図と変形モード図が得られる(表2と表4)。

このときの解析時間は、基準モデルの約1/8にする ことができ、さらにサブステップ数の適切な選択によ り、10~50%の時間を削減できることが分かった。

(2) サブステップ数の初期値を1にしても芯ブレー ス横方向5要素分割でアスペクト比が1:1であれば 同様に十分な解析ができる(表3)。

(3) 横方向2要素分割でアスペクト比が1:2では、 サブステップ数の初期値を1にすると基準モデルによ り得られた芯ブレースのモードとは異なる解析結果と なる(表5)。基準モデルと同様な結果を得るために は初期値10が必要になる。

(4) 今後の形状の異なる座屈拘束ブレースの解析で では初期モデルとして、芯ブレース横方向2要素分割 で、アスペクト比を1:3、サブステップ数の初期値 を10で実行するとよい。このとき、収束が困難であれ ばサブステップ数を100に増分し、さらに困難なとき アスペクト比を1:2へと自由度を増やす方針で効率 良く試みることができる。

(5) 1回目の解析モデルで得られた結果は妥当な解 でない可能性もあるため、その上位の条件(横方向分 割数、アスペクト比およびサブステップ数)で再度試 み、解全体の収束性を確認する必要がある。

なお、本報告では解析初期モデルの指針を得ること ができたが、本研究のための普遍的な解析モデル作成 の指針を得るには到っていない。このために、とくに 節点数と解析結果(とくに解析時間)の明確な関係を 得るための課題が多く残っている。例えば、芯ブレー ス横方向2要素分割で、アスペクト比が1:1のモデ ルや横方向5要素分割で、アスペクト比が1:3以上 のモデルがあり、またこれらの中間の横方向3要素分 割や4要素分割についても検討しなければならない。

[参考文献]

- (1) 安藤信好、高橋春蘭:「鉄筋コンクリートにより ブレースを拘束したアンボンドブレースの基礎的 研究」、構造工学論文集 Vol.36B(1990年3月)、 pp.219-232
- (2) 佐伯英一郎、岩松浩一、和田章:「有限要素法に よるアンボンドブレースの弾塑性挙動解析と実験 結果の比較」、日本建築学会論文報告集No.484, pp.111-120、1996年6月
- (3) 桑原進、多田元英、米山隆也、今井克彦:「二重 鋼管の補剛性能に関する研究」、日本建築学会論 文報告集No.445,pp.151-158、1993年3月
- (4)竹板和成、長尾直治、田口孝、萩野谷学:「三重 鋼管座屈拘束制震ブレースの耐震性能に関する研 究(その2:実験結果の考察と有限要素法解析)」、 日本建築学大会学術講演梗概集(近畿) pp.1013-1014、2005年9月
- (5)加藤基規、宇佐美勉、葛西昭:「座屈拘束ブレースの繰り返し弾塑性挙動に関する数値解析研究」、
 構造工学論文集 Vol.48A pp.641-648、(2002年3月)
- (6) 宇佐美勉、加藤基規、葛西昭:「制震ダンパーとしての座屈拘束ブレースの要求性能」、構造工学 論文集 Vol.50A pp.527-538、(2004年3月)
- (7)和泉田洋次、川上誠、岩田衛:「鋼モルタル板を 用いた座屈拘束ブレースの有限要素法による弾塑 性大変形の解析」日本建築学会論文報告集No. 618,pp.207-213、2007年8月
- (8) 吉田競人、安藤信好、三谷勲:「鉄筋コンクリート補剛材によるアンボンドブレースの必要剛性に
 関する研究」日本建築学会論文報告集No.521,pp. 141-147、1999年7月
- (9)藤本盛久、和田章、佐伯英一郎、渡辺厚、人見泰義:「鋼管コンクリートにより座屈を拘束したアンボンドブレースに関する研究」、構造工学論文集 Vol.34B(1988年3月)、pp.249-258
- (10)日本建築学会 構造委員会:「鋼構造制振技術の現状と設計指針への期待(鋼構造における制振のこれから)、2006年日本建築学会大会 パネルディスカッション資料、2006年9月、pp.1-52
- (11)日本建築学会 振動運営委員会等:「振動制御 と新しい展開(交通振動から地震まで)、シンポ ジウム資料、2007年12月、p.2
- (12) 吉田競人、栗山好夫:「有限要素法によるアン ボンドブレースの接触解析(その1 芯ブレース

突起による不均一性がモードの分岐に及ぼす影響)」、日本建築学会大会学術講演梗概集C-1、 構造Ⅲ、pp.875-876、2006

- (13) 栗山好夫、吉田競人:「座屈拘束ブレースの座 屈と分岐」、2008実践研究発表会、2008年9月、 pp.41-42
- (14) 栗山好夫、吉田競人:「座屈拘束ブレースのた めの有限要素法による非線形問題」、実践教育ジャー ナル、2008年12月、pp.74-77
- (15) Yoshida Keito and Kuriyama Yoshio,
 " Bifurcation Phenomena of Buckling-Restrained Braces (BRB)", Fifth International Conference on Coupled Instabilities in Metal Structures, Sydney Australia, 23-25 June 2008, pp.175-179
- (16) Yoshida Keito and Kuriyama Yoshio,
 " Stiffness and Strength Requirements for Buckling Restraind Brace Cover", 9th International Conference on Steel Concrete Composite and Hybrid Structures, Leeds UK., 8-10 July 2009